Involutions of reductive Lie algebras
نویسنده
چکیده
Let G be a reductive group over a field of characteristic 6= 2, let g = Lie(G), let θ be an involutive automorphism of G and let g = k⊕p be the associated symmetric space decomposition. For k = C, Kostant and Rallis studied [17] properties of orbits, centralizers, and invariants related to the (−1) eigenspace p. In this paper, we generalise [17] to the case of good positive characteristic. Among other results, we prove that the variety N of nilpotent elements in p has a dense open orbit, and give the number of irreducible components of N for each class of involution of a simple algebraic group. We also show that every fibre of the quotient map π : p → p//G has a dense open orbit, and that the corresponding statement for G, conjectured by Richardson, is not true.
منابع مشابه
2 Generalized Reductive Lie
We investigate a class of Lie algebras which we call generalized reductive Lie algebras. These are generalizations of semi-simple, reductive, and affine Kac-Moody Lie algebras. A generalized reductive Lie algebra which has an irreducible root system is said to be irreducible and we note that this class of algebras have been under intensive investigation in recent years. They have also been call...
متن کاملHomogeneous Spaces Defined by Lie Group Automorphisms. Ii
We will drop the compactness hypothesis on G in the results of §6, doing this in such a way that problems can be reduced to the compact case. This involves the notions of reductive Lie groups and algebras and Cartan involutions. Let © be a Lie algebra. A subalgebra S c © is called a reductive subaU gebra if the representation ad%\® of ίΐ on © is fully reducible. © is called reductive if it is a...
متن کاملMinimal Faithful Representations of Reductive Lie Algebras
We prove an explicit formula for the invariant μ(g) for finite-dimensional semisimple, and reductive Lie algebras g over C. Here μ(g) is the minimal dimension of a faithful linear representation of g. The result can be used to study Dynkin’s classification of maximal reductive subalgebras of semisimple Lie algebras.
متن کاملAlgebraic Groups with a Commuting Pair of Involutions and Semisimple Symmetric Spaces
Let G be a connected reductive algebraic group defined over an algebraically closed field F of characteristic not 2. Denote the Lie algebra of G by 9. In this paper we shall classify the isomorphism classes of ordered pairs of commuting involutorial automorphisms of G. This is shown to be independent of the characteristic of F and can be applied to describe all semisimple locally symmetric spac...
متن کاملLecture 6: Kac-moody Algebras, Reductive Groups, and Representations
We start by introducing Kac-Moody algebras and completing the classification of finite dimensional semisimple Lie algebras. We then discuss the classification of finite dimensional representations of semisimple Lie algebras (and, more generally, integrable highest weight representations of Kac-Moody algebras). We finish by discussing the structure and representation theory of reductive algebrai...
متن کامل